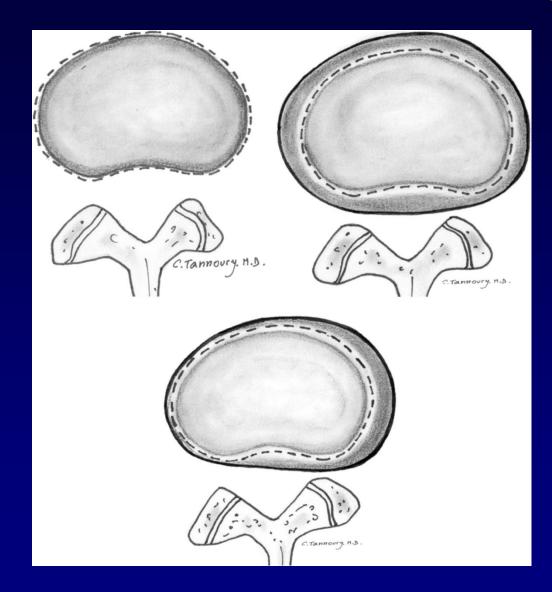
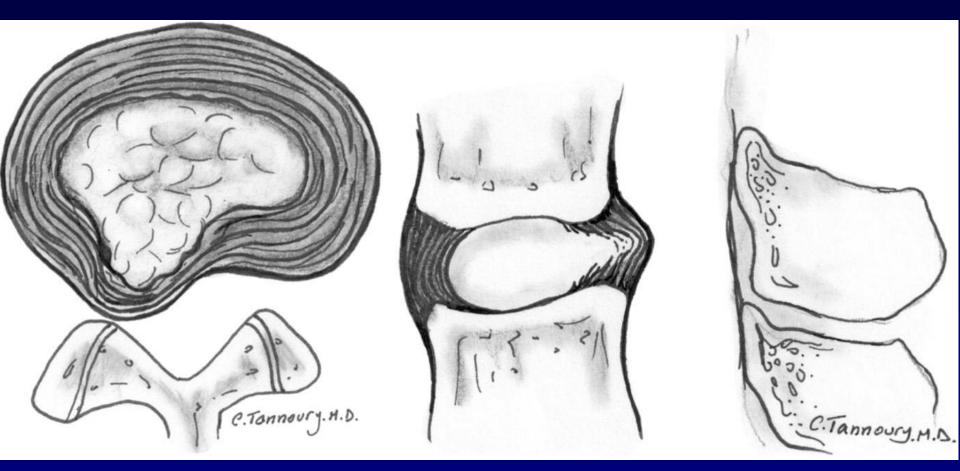
Evidence-Based Medicine and the Forensic Examination Montana State Fund 17th Annual Course Helena, Montana, June, 2017

Diana Kraemer, MD, FAANS, CEDIR Board Certified in Neurological Surgery Certified Examiner in Impairment and Disability Ratings

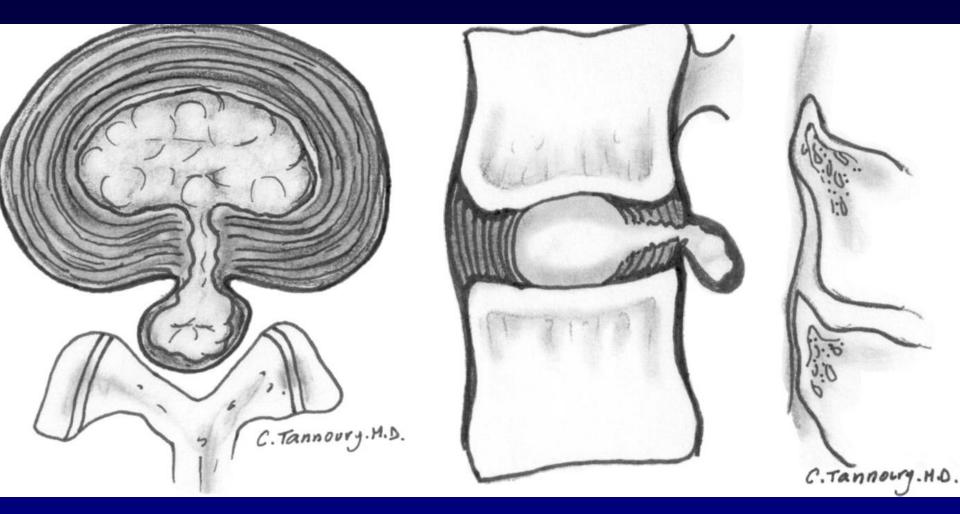
> www.dkraemermd.com dkraemermd@gmail.com


Terminology

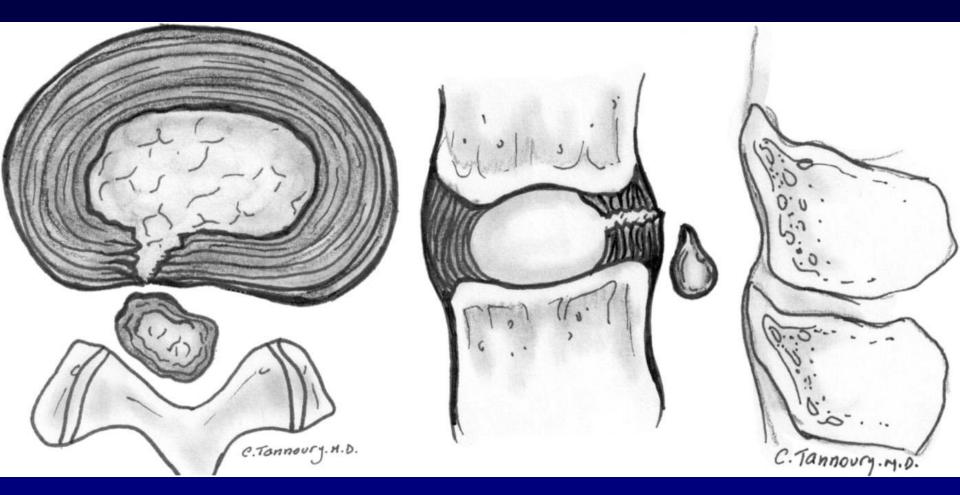
SPINE CONDITIONS

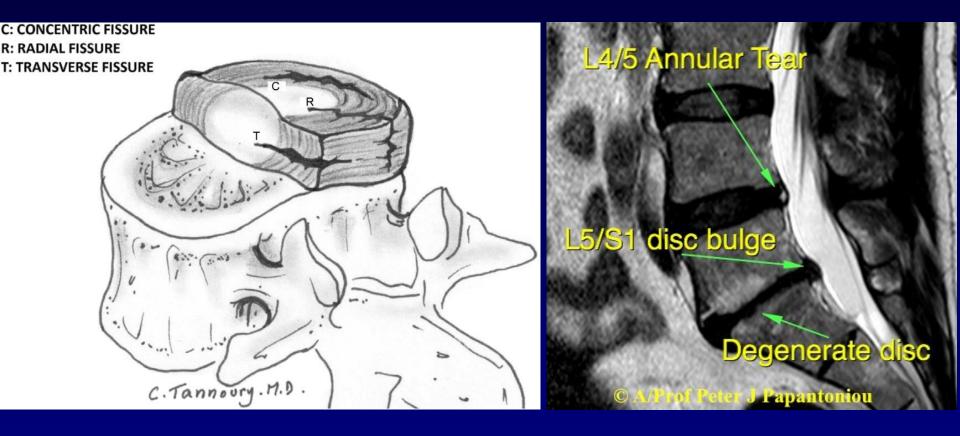

= Spondylosis

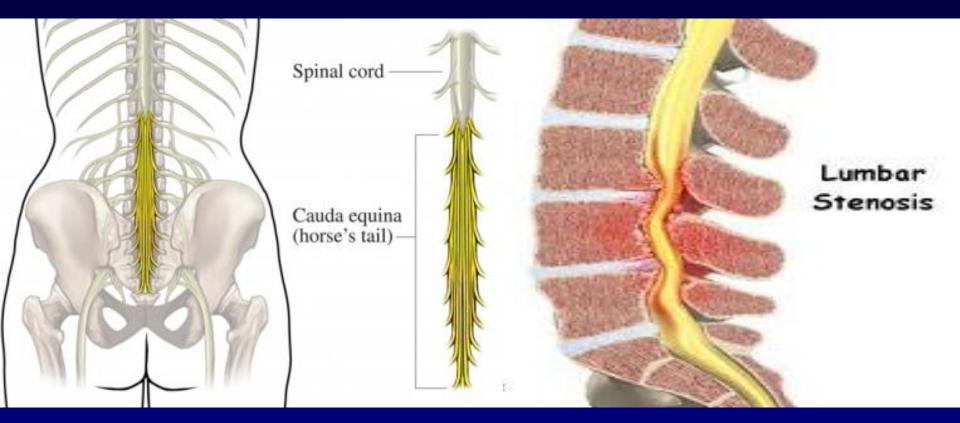
Disc bulge

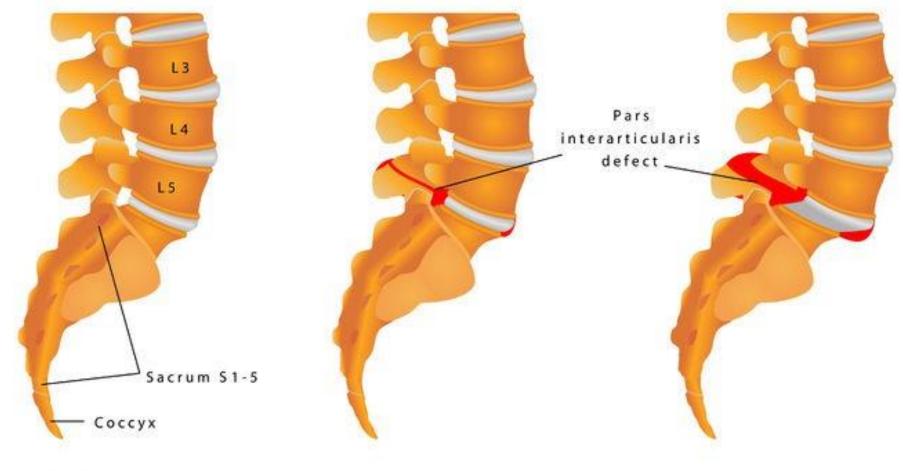


-Diffuse -Central -Asymmetric -Far Lateral


Disc Protrusion

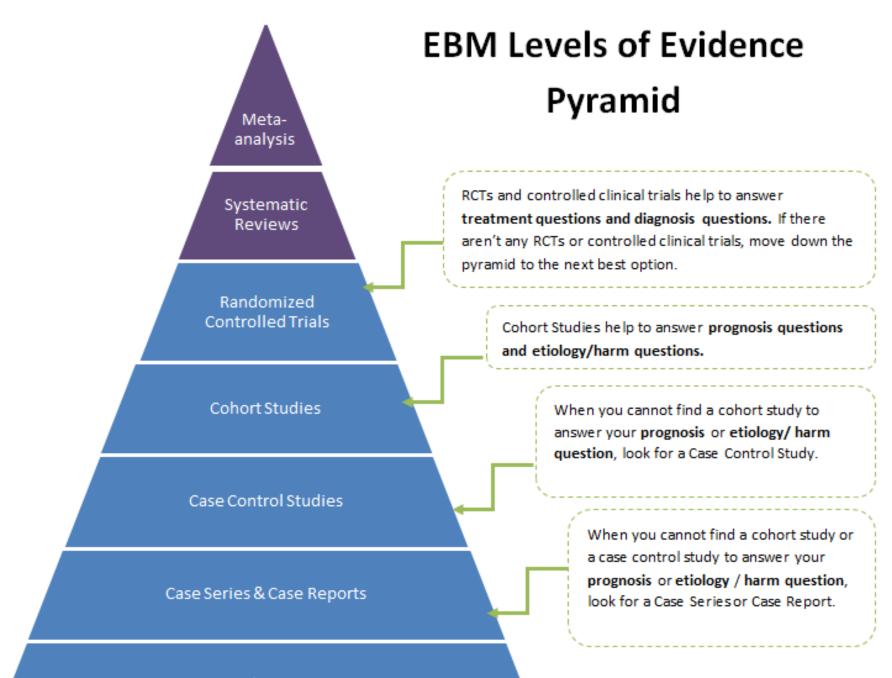

Disc Extrusion


Disc Sequestration


Annular Tear

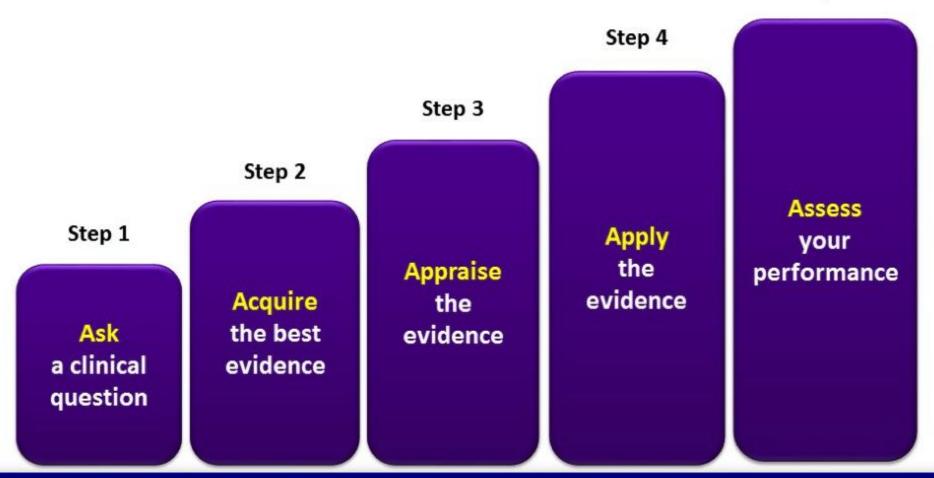
Lumbar Stenosis


Spondylolithstesis



Pars Interarticularis

Spondylolysis Spondylolisthesis


Spondylolithstesis

Animal Studies / Laboratory Studies

The 5 Steps of Evidence-Based Medicine

Step 5

Prevalence of Spondylosis by Age in asymptomatic people:

 Age
 Bulge
 Protrusion
 S-lithstesis

 20
 30%
 29%
 3%

 80
 84%
 43%
 50%

 \triangleright Disc degeneration in 96% at age 80!

Brinjijki and Leutmer, AMJR, 2015

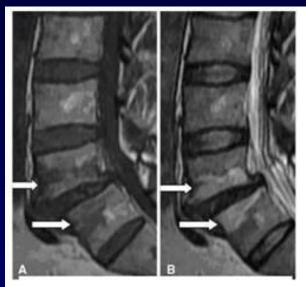
Prevalence in Asymptomatic People: Lumbar Disc Degeneration

Age	Degen	Bulge	Protrusion
20-29	37%	30%	30%
30-39	50%	40%	30%
40-49	70%	50%	35%
50-59	80%	60%	40%
> 60	90%	70%	40%

Annular Tear:

20% at age 20 30% at age 80

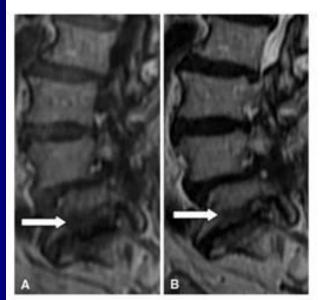
Jarvik, 2015 AJNR


Prevalence in Asymptomatic People: Lumbar Disc Degeneration

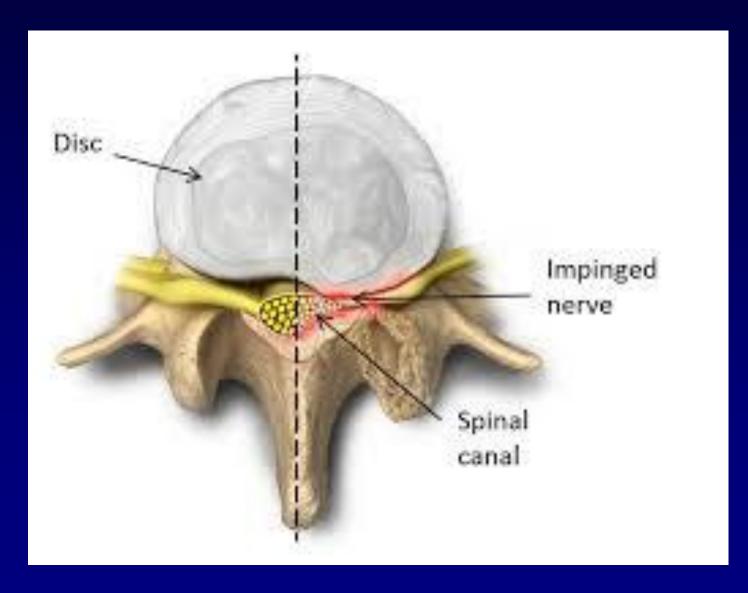
Age	Degen	Bulge	Protrusion	Ann Tear
20-29	37%	30%	30%	
30-39	50%	40%	30%	20%
40-49	70%	50%	35%	
50-59	80%	60%	40%	
> 60	90%	70%	40%	30%

"So, Dr. Kraemer, you're telling me that my 25yo..." ???Are there different disease processes???

Jarvik, 2015 AJNR


Modic Changes

MC type I (arrows): hypointense on T1WI (A) and hyperintense on T2WI (B)



MC type II (arrows): hyperintense on T1WI (A) and isointense or hyperintense on T2WI (B)

MC type III (arrows): hypointense on T1WI (A) and hypointense on T2WI (B)

Spondylosis is degenerative!

Disc Degeneration \neq Back Pain!

AgeDisc BulgeDisc Protrusion40-4950%35%

Degeneration increases with Age, >>> Back Pain!

People who exercise have LESS back pain:

Disc Herniation \neq Sciatica!

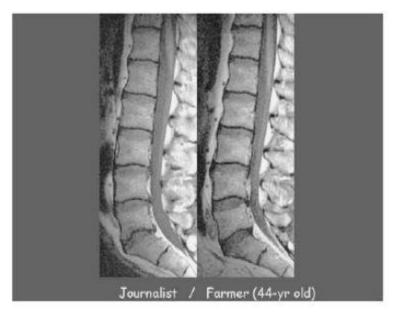
 year study: Early Surgery vs Prolonged Medical Therapy
 At 1 Year: 84% favorable outcome (all patients) Disc Herniation: 85% with Favorable Outcome No Disc Herniation: 83% with Favorable Outcome

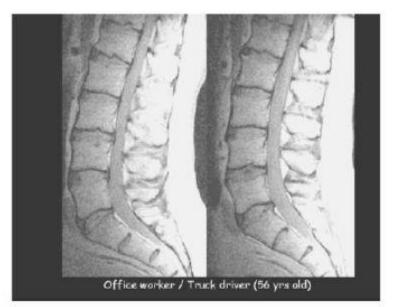
Same for Disc Herniation with Nerve Root Compression Same for Post-op with or without Enhancement on Nerve

el Barzouhi, NEJM, 2013

Twin Studies

Twin Spine Study

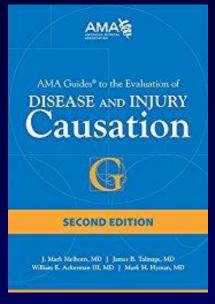

Monozygotic Twins: Journalist/farmer or Programmer/plumber MRIs looked remarkably similar!!!


- •Genetics:
- •Work Load:
- •Leisure activities:
- •Driving/Body Vibration:
- •Smoking:

Strong No association No association No association + Small

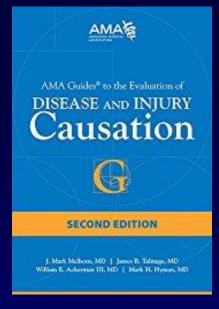
Battié, et al, Spine 2010

Esempi di gemelli con presenza/assenza di esposizione a MMC

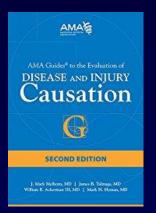

Twin Spine Study: Monozygotic Twins with different occupations: *Degeneration is Genetic!*

Battié MC et al. The Twin Spine Study: contributions to a changing view of disc degeneration. Spine J. 2009;9:47-59.

Minor Trauma


5 year study of 200 people with Neck Pain:

- 16 episodes of Major Trauma:
- 170/200 had 652 episodes of Minor Trauma: Falls, Lifting, MVA, Sports Injuries
- 1/200 Disc Herniation: NOT assoc. with trauma!
 93% predictive ability for Disabling Low Back Pain :
- abnormal baseline psych profile or
- previous disputed compensation claim
- NOT improved by adding falls, lifting or MVA Carragee, Spine 2006


What does the Science Say? Low Back Pain (LBP):

- Insufficient Evidence for Heavy Work
- Insufficient Evidence for Awkward Positions
- Insufficient Evidence for Flexion (Bending)
- Insufficient Evidence for Twisting

What does the Science Say? Low Back Pain (LBP):

- Strong Evidence: **Sitting** is **NOT** associated LBP
- Strong Evidence that Standing/Walking <2 hrs/day is NOT associated with LBP.
- Insufficient Evidence for Standing/Walking >2h/d

What does the Science Say? Low Back Pain (LBP):

- Strong Evidence that Previous LBP is a risk factor for future LBP
- Strong Evidence that AGE is NOT a factor in LBP.
- Insufficient Evidence for Smoking in LBP
- Insufficient Evidence for Obesity in LBP
- Strong Evidence that Exercise and Leisure Activities are NOT associated with LBP

Summary of EBM: (Battié, Carragee, Jarvik, et al)

For the LUMBAR SPINE:

- Degenerative Changes are Common.
- Degenerative Changes = age and genetics.
- Degenerative Changes do NOT imply symptoms.
- Minor Trauma rarely causes structural changes.
- Disability is predicted by psychological status, smoking, and compensation issues.

EBM in Cervical Disease:

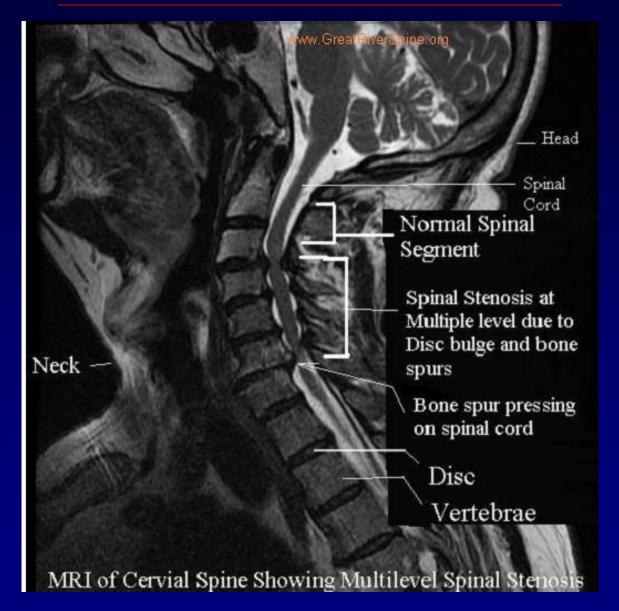
Can we extrapolate the Lumbar Spine literature to the Cervical Spine?

And what are the limitations of doing so?

Cervical Spondylosis; Pathology

An x-ray of the neck (side view) showing cervical spondylosis Age Related Degeneration and Dehydration of intervertebal Disks

Decreased cartilage between adjacent vertebral bodies


Developmental laxity in the spinal supportive ligaments

Hyper-mobility of spinal segment

Bone-on bone apposition propagates bone spur formation which narrow the cervical spinal canal and may compress the cervical nerve roots and spinal cord

Cervical Stenosis

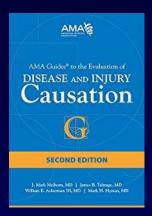
Cervical Stenosis

Prevalence in Asymptomatic People: Cervical Disc Degeneration

Age	Disc Bulge	Disc Protrusion
20-29	15%	10%
30-39	20%	15%
40-49	40%	20%
50-59	65%	25%
▶ 60	85%	30%

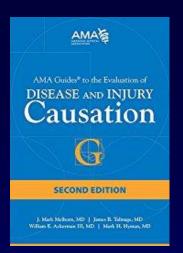
7% with spinal cord compression on MRI

Matsumoto, J Bone & Joint Surgery, 1998


Tandem Changes in the Lumbar and Cervical Spine

	Lumbar spine	Cervical spine	Tandem positive findings ^a
Decrease in	70	76	61
signal intensity	(74.5 %)	(80.9 %)	(64.9 %)
Posterior disc protrusion	74 (78.7)	72 (76.6)	62 (66.0)
Anterior compression of dura	77 (81.9)	76 (80.9)	64 (68.1)
Disc space narrowing	20 (21.3)	32 (34.0)	10 (10.6)
Spinal canal stenosis	12 (12.8)	13 (13.8)	4 (4.3)

Any one of the 79 (84.0) 85 (90.4) 74 (78.7) five findings


Matsumoto, 2012

What does the Science Say? Neck Pain

Insufficient Evidence for

- Heavy Work
- Neck Posture
- Prolonged Work in a sedentary position
- Repetitive and Precision Work

What does the Science Say? Neck Pain

- AGE
- Female Gender
- Previous history of Neck/shoulder pain

Note: <u>Past records</u> are **REALLY** helpful!

Whiplash-Associated Disability (WAD)

- Only 50% symptom free at 1 year.
- Age: Younger ages have increased pain
- Worse pain at onset affects duration of symptoms
- + Neurologic findings at onset affects duration
- Frequent, early health care usage predicts poorer outcome.

Psychological Findings: Worse outcomes with:

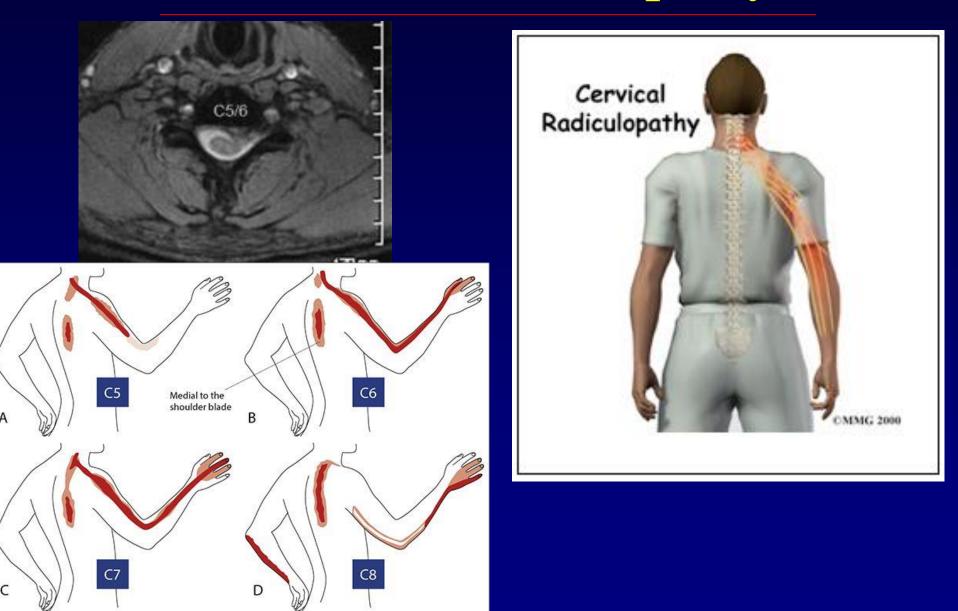
- Post-injury psychological distress
- Passive coping style

WAD I&II, 2008

Whiplash-Associated Disability (WAD)

No evidence

- Severity of crash affects rate of WAD
- Preexisting degenerative changes affect rate.
- Awareness of impending crash and neck position affect rate.


Fewer claims are made when pain/suffering compensation is eliminated.

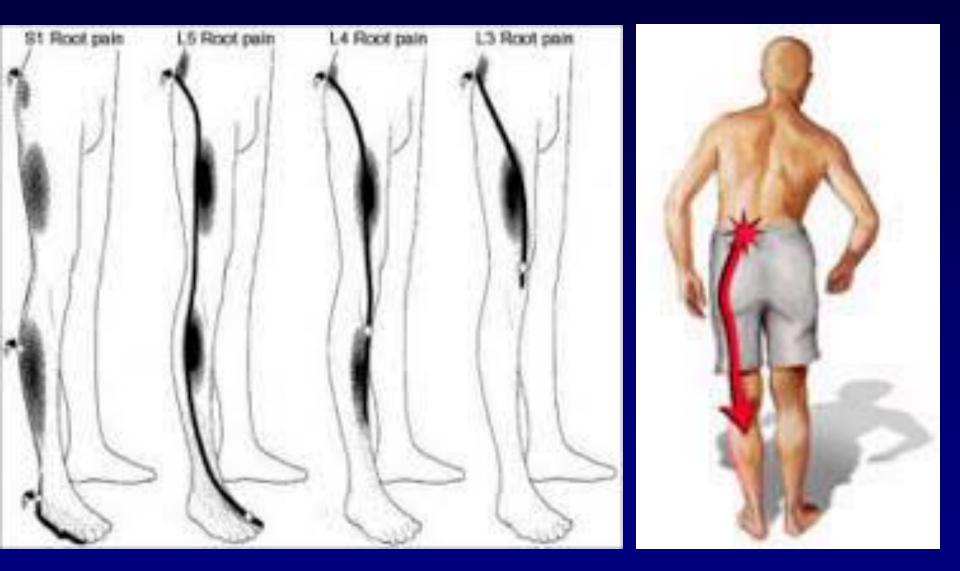
Carroll and Holm, WAD I&II, 2008

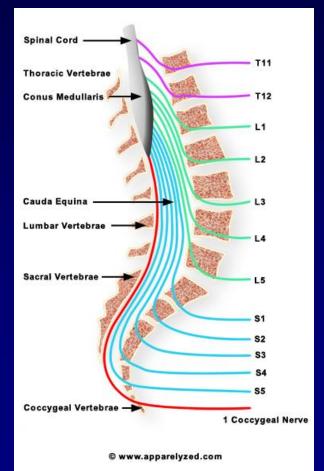
Evidence Based Medicine:

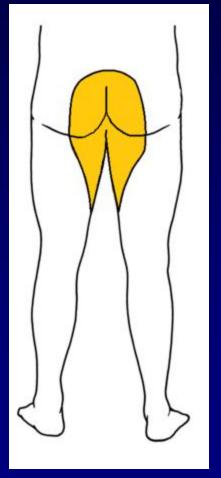
Objective Findings and the **Neurologic Examination:**

Cervical Radiculopathy

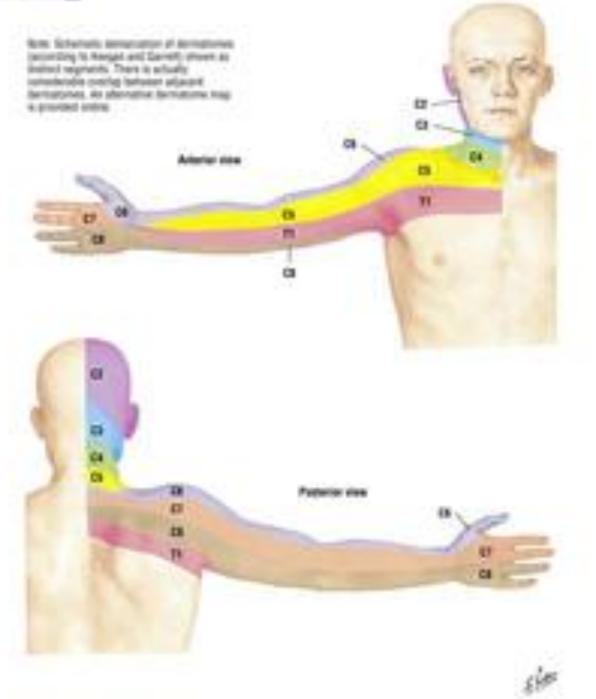
Cervical Myelopathy


Symptoms

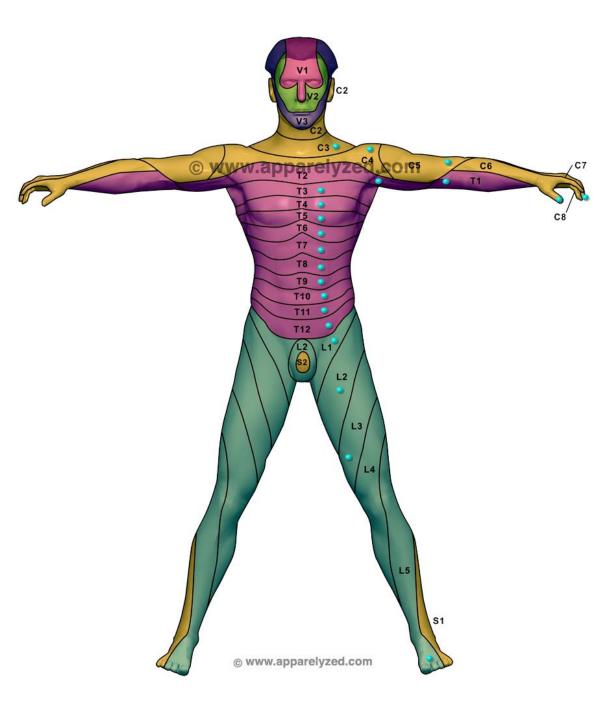

©MMG 2002

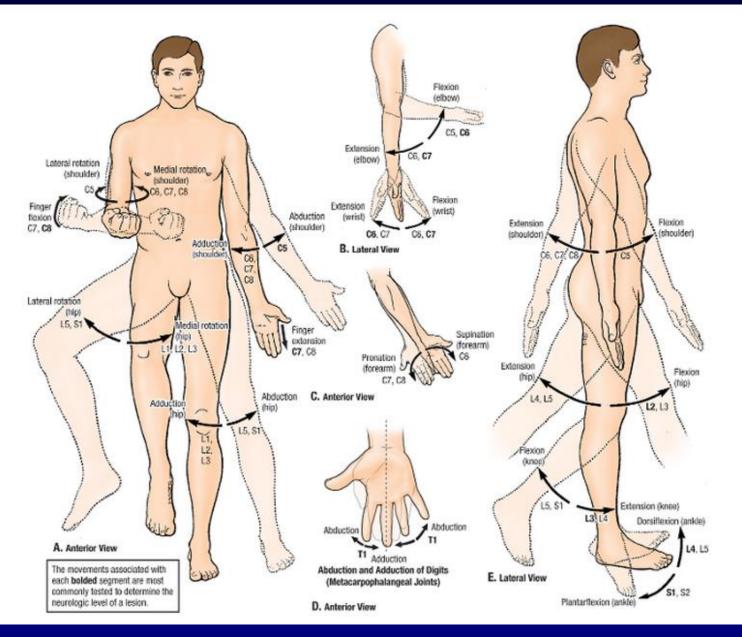


Lumbar radiculopathy



Cauda Equina Syndrome





Myotomes

Motor strength

Grade 5 Normal power	Grade 5	Normal po	wer
----------------------	---------	-----------	-----

Grade 2

- Grade 4 Active movement against gravity with resistance
- Grade 3 Active movement against gravity without resistance
 - Active movement with gravity eliminated
- Grade 1 Only a trace or flicker of movement
- Grade 0 No movement

Non-physiologic findings:

Motor Strength:

- Give-way weakness
- Ratcheting
- Cog-wheeling (not Parkinson's)

Sensory:

- Non-dermatomal (entire extremity)
- Invalid two-point discrimination
- Midline split
- Entire hand

Waddell's signs

Simulation **Axial Loading** Rotation Distraction: Straight Leg Raising Regional: Weakness Sensory **Overreaction**: verbalization, facial expression, muscle tension and tremor, or collapsing

Waddell's

- Study done on White Males:
- Significance requires judgement:
- Easy to place too much significance on findings:
- Is only one part of the Exam:
- Need to combine with objective medical findings.

Report reads:

- "Axial loading, shoulder loading, en-bloc rotation and light touch are (descriptor/positive/negative)"
- "Straight leg test with distraction is tolerated to _____degrees"
- "There is tenderness to deep palpation (multiple, described)"
- Or a description of exaggerated reaction, "grimace, sighs, nonphysiologic tremor, leg collapse with little weakness"...

Montana State Guidelines Includes Definitions

Chronic Pain Guidelines:

Pain Behaviors: "Non-verbal communications

- grimacing, groaning,
- limping, using visible pain relieving or support devices
- requisition of pain medications,

Outward manifestations of pain,

and through which a person may communicate that pain is being experienced"

Thin Skull Rule-WA state

The "thin-skull" rule: Provides that a wrongdoer must take his victim as he finds him.

The aggressor is responsible for all of the consequences that ensue.

Lighting Up- WA

Previous condition: latent, quiescent, Asymptomatic AND Non-disabling

Entire impairment is attributed to the injury, none to the pre-existing condition.

Lighting Up - WA

Preexisting condition is NOT Lit-up IF:

The condition was symptomatic before injury Or

Condition was a naturally progressing condition that would have progressed to symptoms without the injury.

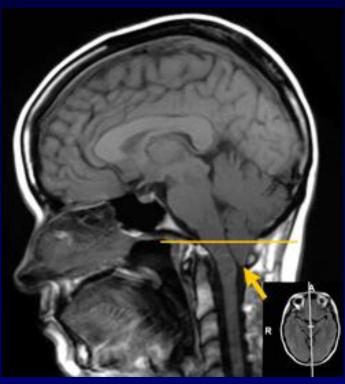
Lighting Up (WA)

Zavala v Twin City Foods: 2015 Knee injury vs. pre-existing arthritis:

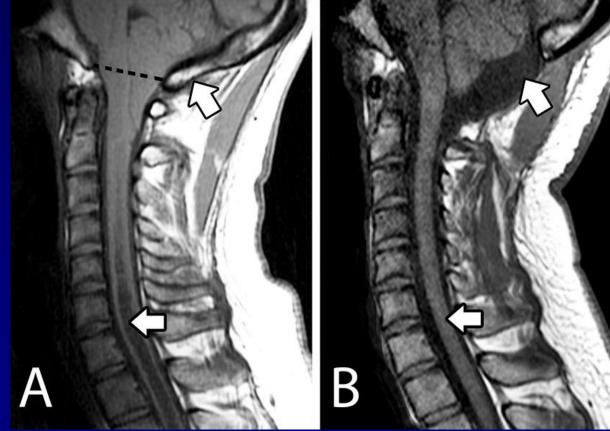
The Court relied on: expert witness medical testimony to establish that the pre-existing condition was probably symptomatic, over worker's testimony that the condition was asymptomatic.

Prevention of Low Back Pain

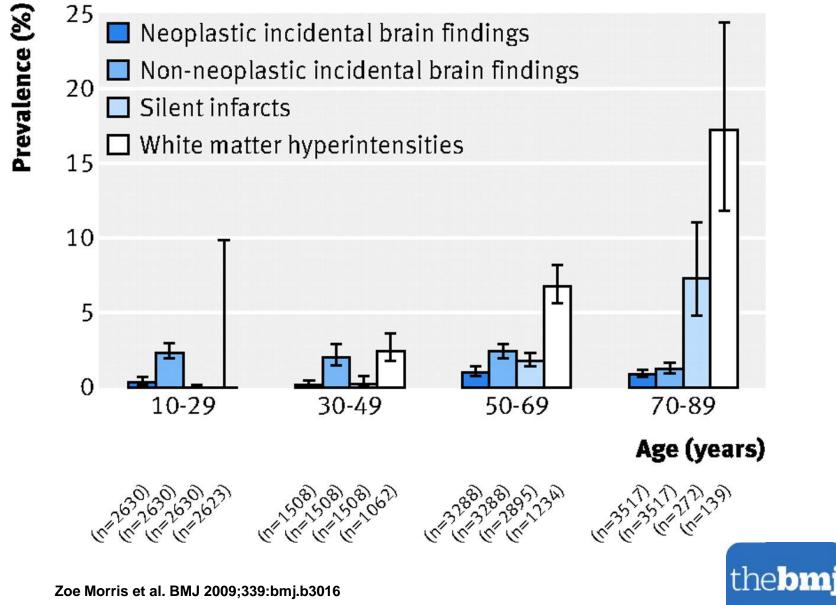
Effective


• Exercise Interventions

Ineffective:


- Stress management
- Shoe inserts
- Back supports
- Ergonomic/back education
- Reduced lifting programs.

Now: What am I learning?

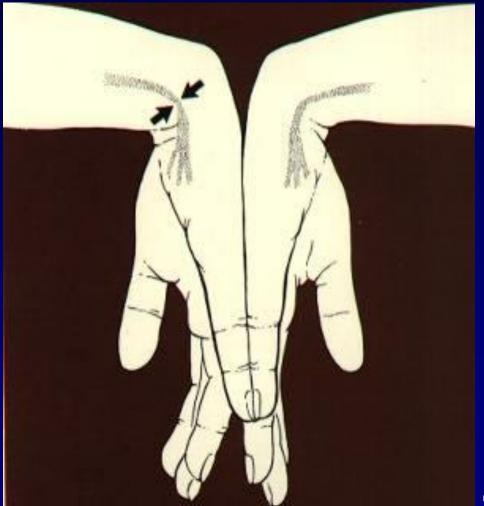

- 50% of fusions begin with a "strain".
- EscSalating Disability Claims
- Can IME's be Advocates for the Claimant?
- What are Best Practices for Examiners?
- What is Cost Effective?
- Specific Challenging syndromes

Chiari I and minor trauma

Incidental Findings on Brain MRI: Prevalence with 95% confidence intervals. Overall Incidence 2.7% (1/37) --- Chiari I (1/400)

Symptomatic Chiari I after minor Trauma:

- 3/85 patients met criteria of:
- Initially Asymtomatic with no Neuro deficit.
- Symptoms of Concussion or Whiplash present immediately after the trauma.
- New Chiari-like symptoms in < 6 months.
- No other explanation.
- Surgery indicated with improvement or stabilized symptoms after surgery.


MJ Wan, Neurosurgery

Median Nerve

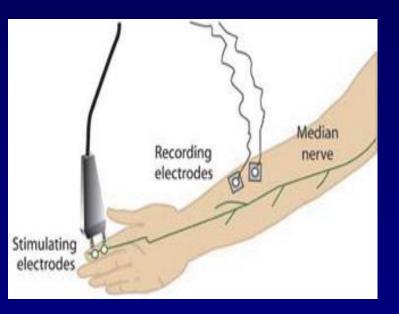
Ŧ.

Ulnar Nerve

Physical Findings of CTS

Phalen test

 Wrists maximally flexed, may produce symptoms within 60 seconds


Tourniquet test

 Blood pressure cuff on arm, inflated above systolic pressure, symptoms within 60 seconds

Slide Courtesy of Charles N. Brooks, MD

Diagnosing CTS

- History & physical exam often sufficient
- However, may get nerve conduction study (NCS) when:

Diagnosis is in doubt
Workers' comp case
Surgery is considered

Slide Courtesy of Charles N. Brooks, MD

Carpal Tunnel Syndrome:

More likely to occur in:

- Women than men (4-5 X)
- 30-60 years of age
- Obese
- Physically inactive

Carpal Tunnel Syndrome:

External forces:

- Direct pressure,
- Repetitive high force wrist and finger motion
- Vibration

Physiologic Factors:

- Obesity
- Pregnancy
- Menopause
- Kidney failure
- Thyroid disease, esp. hypothyroidism
- Trauma

Inflammation: Gout, Infection, Rh arthritis, Tenosynovitis **Neuropathic disorders:** Alcohol, Diabetes, Solvent exposure

Does Keyboarding Cause CTS? ■No

Prevalence of CTS in computer users is similar to or *lower* than the general population
 Keyboarding may be protective

Slide Courtesy of Charles N. Brooks, MD

When is CTS Work Related?

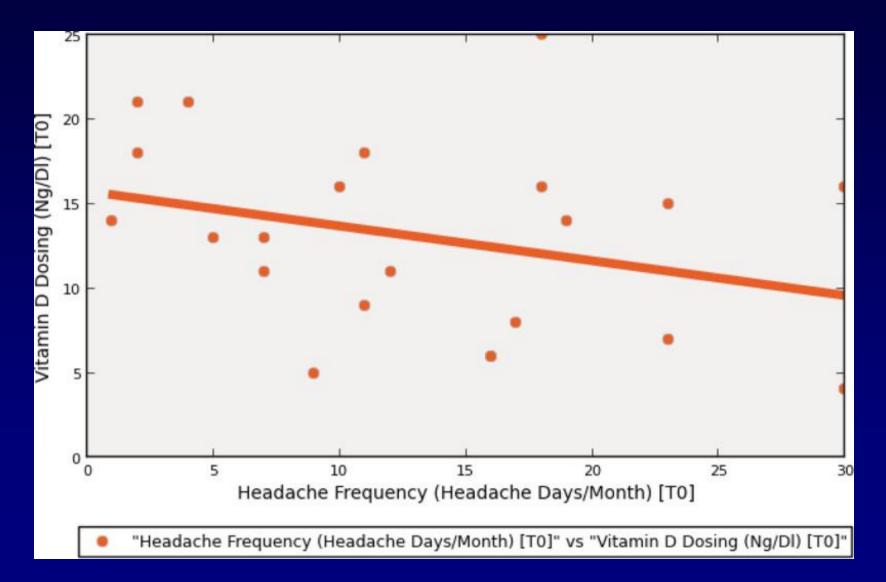
High force *and* repetition
Vibration exposure
Cold exposure ???

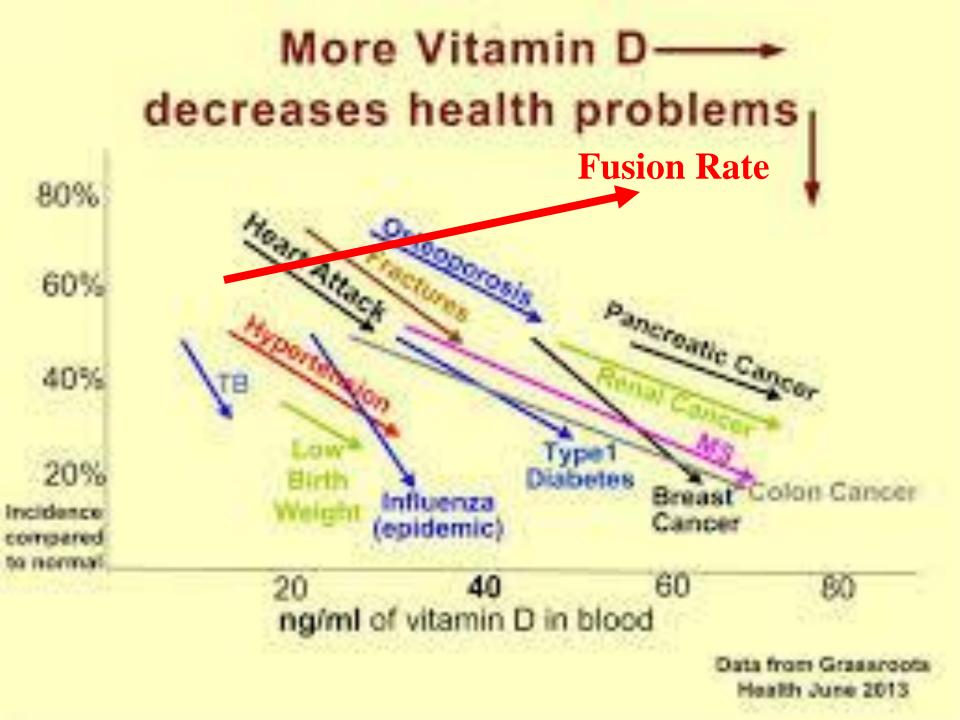
Slide Courtesy of Charles N. Brooks, MD

Vitamin D

VITAMIN D IN HUMAN DISEASE STATES PARATHYROID THYROID Hyperparathyroidism Hypoparathyroidism Castra 25(0H)203 6 Médullary carcinoma SKIN 10,25(OH)2D3 Psoriasis 25(OH)D3 Secondary hyperparathyroidism BLOOD 25(OH)D3 1a,25(OH)2D3 Sarcoidosis Ða PANCREAS 25(OH)D3 1a,25(OH)203 Ca2+ Tuberculosis 1a,25(OH)₂D3 Diabetes 1α,25(OH)₂D₃ 24R,25(OH)2D3 /24R,25(OH),D_/ KIDNEY 125(OH)D3 PTH PTH Ca²⁺Pj Chronic renat Ďз СТ LIVER 25(OH)D3 disease Ca²⁺ Hypophosphatemic Cirrhosis Рi VDRR Drug induced Vitamin Dmetabolism (Apr dependent rickets Obstructive Ű jaundice · -251041 1 a, 25(OH)2 D3 24 R,25(OH)2D3?? BONE Ca²⁺, Pi Dз INTESTINE DIET Anticonvulsant Ca²⁺,Pi treatment Glucocorticoid Fibrogenesis antagonism imperfecta ossium diopathic Osteitis fibrosa cystica hypercalcemia Osteomalacia Malabsorption Osteoporosis syndrome Osteopenia Steatorrhea Osteosclerosis Tropical sprue Renal osteodystrophy

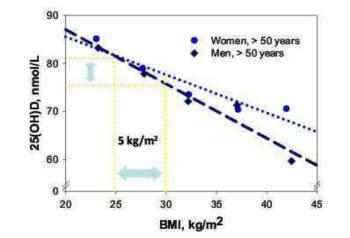
Rickets

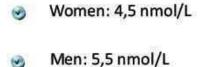

150 ng/ml —	vitamin D intoxication
70 ng/ml –	overdosed, but not yet toxic
	upper norm
50 ng/ml -	optimal vitamin D level
30 ng/ml –	suboptimal vitamin D level
20 ng/ml — 10 ng/ml —	vitamin D deficiency
5 ng/ml –	serious vitamin D deficiency
0 ng/ml –	severe vitamin D deficiency



- Improves Fusion Rate
- Decreases Low Back Pain
- Improves Migraine, Depression
- Improves Bone Health
- Lowers Risk of:
 - -Death, Diabetes, Cancer, MS, Asthma!

Low Vitamin D levels worsen Migraine




Below 30	30 to 50	50 and above	125 and above	
Deficient.	Generally	Adequate	Too high	Vitamin D
Talk to your	inadequate for	(but more is	(may have	
doctor about	bone and	not necessarily	adverse	
supplements.	overall health.	better).	effects).	

Lagunova et al. Mol. Nutr. Food Res. 2010; 54: 1127-1133.

Decay in serum 25(OH)D levels with increasing BMI

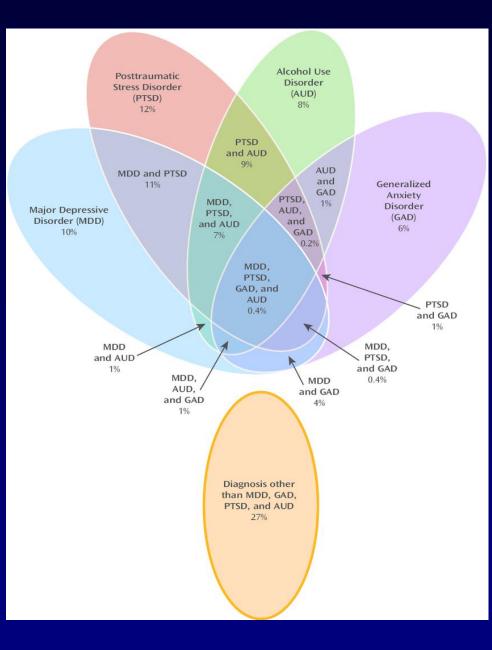
25 (OH)D decrease per each 5 kg/m² BMI increase

All: 5 nmol/L 1

Study	25(OH)D (±SD) (nmpl/L)	Age (±SD) (years)	BMI range (kg/m ²)	Gender	25(OH)D decrease ^{#}}	р- Value
McGill et al.	62.2 (22.7)	47.6 (±11.6)	28-50	Women, men	0.7 nmol/L	0.002
Rodrigues-Rodrigues	56.5	27.8 (±4.6)	24-35	Women	1.2 nmol/L	< 0.05
Stein et al.	44.9 (22)	39 (12)	35-65	Women, men	1.3 nmol/L	< 0.01
	Radiumhospitalet		Zoya.lagi	inova@rr-research	.no	

Gisto universitet sayketus

Which is cost-effective?


Co-Morbidity with Migraine

	F (df-btw, df-tot)	P-value	η²
Depression	192.034 (1, 2,909)	0.000	0.062
Anxiety	120.116 (1, 2,909)	0.000	0.040
Stroke	4.015 (1, 2,909)	0.045	0.001
Epilepsy	0.607 (1, 2,909)	0.436	0.000
Hypertension	38.634 (1, 2,909)	0.000	0.013
Diabetes	7.148 (1, 2,909)	0.008	0.002
Bipolar	8.989 (1, 2,909)	0.003	0.003
IBS	73.210 (1, 2,909)	0.000	0.025
Chronic pain	107.060 (1, 2,909)	0.000	0.036
Fibromyalgia	39.812 (1, 2,909)	0.000	0.014
Thyroid disease	35.871 (1, 2,909)	0.000	0.012
Chronic fatigue	64.419 (1, 2,909)	0.000	0.022
Asthma	30.355 (1, 2,909)	0.000	0.010
COPD	6.326 (1, 2,909)	0.012	0.002
Autoimmune disorder	12.335 (1, 2,909)	0.000	0.004
Negative life event score H, M, L	107.144 (2, 2,909)	0.000	0.069
Migraine symptoms per month (n)	1028.578 (5, 2,909)	0.000	0.639

Depression

Genetics:

- Migraine,
- Depression,
- Motion Sickness,
- Alcohol

Depression Worsens Outcome after Lumbar Fusion

	Depression Group (n = 123)	Control Group ($n = 2676$)	Р			
Days absent from work AIF* (mean \pm SD)	1077.4 ± 99.7	893.4 ± 333.9	<0.001			
Medical costs paid by BWC AIF \dagger (mean \pm SD)	\$93,405.0 ± \$41,749.0	\$71,251.5 ± \$41,094.4	<0.001			
Narcotic utilization AIF (mean \pm SD)						
Days supplied	836.0 ± 690.7	567.2 ± 596.3	<0.001			
Net mg of MEQs prescribed	61,587.8 ± 80,207.7	40,241.6 ± 72,055.8	<0.001			
Average MEDs	66.7 ± 48.7	62.1 ± 58.1	0.388			
New psychological developments within 3 yr AIF						
Depression	0 (0.0%)	430 (16.1%)				
Anxiety	1 (0.8%)	32 (1.2%)	0.701			
Adjustment reaction	0 (0.0%)	50 (1.9%)	0.126			
PTSD	5 (4.1%)	14 (0.5%)	<0.001			
Bipolar	0 (0.0%)	8 (0.3%)	0.544			
Schizophrenia	0 (0.0%)	1 (< 0.1%)	0.830			
Psychotherapy AIF						
Subjects using psychotherapy AIF	102 (82.9%)	617 (23.1%)	<0.001			
Mean number of sessions	34.3 ± 37.5	5.2 ± 14.1	<0.001			
Did sessions span from BIF to AIF?	78 (63.4%)	47 (1.8%)	<0.001			
Postsurgical infection	0 (0.0%)	10 (0.4%)	0.497			
Failed back syndrome AIF	10 (8.1%)	234 (8.7%)	0.813			
Nonunion/pseudoarthrosis AIF	1 (0.8%)	33 (1.2%)	0.677			
Newly awarded permanent disability‡ AIF	50 (40.7%)	1092 (40.8%)	0.972			
All-cause mortality AIF	3 (2.4%)	47 (1.8%)	0.576			
Subjects with additional lumbar surgery AIF	23 (18.7%)	524 (19.6%)	0.809			
Mean major lumbar surgical procedures AIF	0.21 ± 0.47	0.23 ± 0.50				
Subjects with additional lumbar fusion	19 (15.4%)	400 (14.9%)	0.879			
Subjects with additional decompression	13 (10.6%)	300 (11.2%)	0.825			

<u>Clinical Depression Is</u> <u>a Strong Predictor of</u> <u>Poor Lumbar Fusion</u> <u>Outcomes Among</u> <u>Workers'</u> <u>Compensation</u> <u>Subjects</u>

Anderson, Joshua T.; Haas, Arnold R.; Percy, Rick; Woods, Stephen T.; Ahn, Uri M.; Ahn, Nicholas U.

Spine. 2015:40(10):748-756.

doi: 10.1097/BRS.00000000 00000863

Bold values represent statistically significant.

*AIF: After index fusion, in the context of this study, within 3 years after index fusion.

+Net medical costs paid for by the Ohio BWC within 3 years after index fusion.

‡Permanent disability that was not awarded before fusion but was awarded AIF.

AIF indicates after index fusion; BWC, Bureau of Workers' Compensation; MEQs, morphine equivalent units; MEDs, morphine equivalent units per day; PTSD, posttraumatic stress disorder.

Depression worsens Patient Satisfaction Scores after fusion

	Nondepressed	Depressed	Р
Number of patients	160	57	
Nurses always treated you with courtesy and respect	146/160 (91.3%)	45/57 (78.9%)	0.014*
Nurses always listened carefully to you	120/160 (75.0%)	44/57 (77.2%)	0.741
Nurses always explained things in a way you could understand	122/159 (76.7%)	38/57 (66.7%)	0.137
Doctors always treated you with courtesy and respect	142/160 (88.8%)	41/56 (73.2%)	0.005*
Doctors always listened carefully to you	131/160 (81.9%)	38/56 (67.9%)	0.029*
Doctors always explained things in a way you could understand	124/160 (77.5%)	39/56 (69.6%)	0.240
Your room and bathroom were <i>always</i> kept clean	124/158 (78.5%)	43/57 (75.4%)	0.636
The area around your room was always quiet at night	79/156 (50.6%)	31/57 (54.4%)	0.628
You <i>always</i> got help in getting to the bathroom or using a bedpan as soon as you wanted it	77/114 (67.5%)	25/41 (61.0%)	0.447
After you pressed the call button, you <i>always</i> got help as soon as you wanted it	102/151 (67.5%)	26/53 (49.1%)	0.017*
Your pain was <i>always</i> well controlled	96/156 (61.5%)	28/57 (49.1%)	0.104
The hospital staff <i>always</i> did everything they could to help you with your pain	122/156 (78.2%)	37/56 (66.1%)	0.072
Before giving you any new medicine, hospital staff <i>always</i> told you what the medicine was for	95/124 (76.6%)	32/41 (78.0%)	0.850
Before giving you any new medicine, hospital staff <i>always</i> described possible side effects in a way you could understand	59/120 (49.2%)	16/40 (40.0%)	0.314
Hospital staff talked with you about whether you would have the help you needed when you left the hospital	141/145 (97.2%)	47/52 (90.4%)	0.042*
You got information in writing about what symptoms or health problems to look out for after you left the hospital	137/143 (95.8%)	47/53 (88.7%)	0.065
Staff took your preferences and those of your family into account in deciding what your health care needs would be	86/160 (53.8%)	28/57 (49.1%)	0.548
You had a good understanding of the things you were responsible for in managing your health	100/160 (62.5%)	33/57 (57.9%)	0.540
You clearly understood the purpose for taking each of your medications	110/160 (68.8%)	32/57 (56.1%)	0.086
Rated this hospital as a 9 or 10 out of 10 overall	131/160 (81.9%)	43/57 (75.4%)	0.295
Would definitely recommend this hospital to friends and family	134/160 (83.8%)	40/57 (70.2%)	0.027*
*All P values <0.05 were considered statistically significant.	u <u>1</u>		

*All P values <0.05 were considered statistically significant.

Treatment Implications:

- Migraine retards remission of Depression.
- Smoking Worsens pain, including Migraine.
- Depression worsens surgical outcomes.
- Depression worsens fusion outcomes.
- Exercise improves
 - depression,
 - migraine,
 - low back pain.

Treatment Implications:

How my practice is currently evolving:
-Medical Records Before and After Injury
-Objective Findings: (Physiologic and Non-Physiologic)
-Identify Concordant Findings:
-Screen for Chronic Pain, Depression & Migraine: Treat with:

- Vitamin D to greater than 40ng/ml
- Magnesium and melatonin to improve sleep
- Encourage movement, exercise and RTW

References

- Battie MC, et al. The Twin Spine Study; Contributions to a Changing View of Disc Degeneration. Spine 9:(2009):47-59
- Brinjikji W, Leutmer PH et al AJNR Am J Neuroradiol. 2015;36(4): 811–816.
- el Barzouhi et al, Magnetic Resonance Imaging in Followup Assessment of Sciatica, NEJM,(2013)368:11:999-1007
- Carragee E, et al. Does minor trauma cause serious low back illness? Spine(2006):31:2942-2949
- Carroll LJ et al. Course and Prognostic Factors for Neck pain in Whiplash-Associated Disorders (WAD). Spine(2008):33:45:581-592
- Holm LW et al. The burden and Determinants of Neck Pain in Whiplash-Associated Disorders (WAD) after Traffic Collisions. Spine (2008):33:45:552-559
- Jarvik: Systematic Literature Review of Imaging Features of Spinal Degeneration in Asymptomatic Populations. *AJNR Am J Neuroradiol*. 2015 April; 36(4): 811– 816. doi:10.3174/ajnr.A4173.
- Melhorn, JM: AMA guides to the Evaluation of Disease and Injury Causation, 2nd Edition, AMA Press, 2013

References

- Anderson JT, Ahn UM, Ahn NU, et al, Depression Is a Strong Predictor of Poor Lumbar Fusion Outcomes Among Workers' Compensation Subjects. Spine:2015:40;10:748-756.
- Tom D. Thacher, MD, and Bart L. Clarke, MD: *Review: Vitamin D Insufficiency*. Mayo Clin Proc. 2011;86(1):50-60.
- Turner MK, et al. *Prevalence and Clinical Correlates of Vitamin D Inadequacy among Patients with Chronic Pain.* Pain Medicine: 2008:9:8:979-984
- Ghai B et al., *Vitamin D Supplementation in Patients with Chronic Low Back Pain: An Open Label, Single Arm Clinical Trial:* Pain Physician 2017; 20:E99-E105 ISSN 2150-1149.
- Zoe Morris et al. Incidental findings on Brain MRI. BMJ 2009;339:bmj.b3016
- Wan MJ, et al. *Conversion to Symptomatic Chiari I Malformation after minor head or neck trauma*. Neurosurgery 63:748–753, 2008.
- Psychological Reports, 1996,/9,811-818. ©Psychologic:!\ Reports 1996
- Lees-haley PR et al . Response bias in self-reported history of plaintiffs compared with nonlitigating pr\tients. Psychological Reports, 1996,/9,811-818.
- Daniela Leite de Oliveira et al. The interfaces between vitamin D, sleep and pain. J Endocrin16-0514.

References

- Levin et al. The Impact of Preoperative Depression on HCAHPS Survey Results. Spine 2017:42:675-681
- Lannie Ligthart et al. *The Shared Genetics of Migraine and Anxious Depression*. Headache 2010;50:1549-156
- Carey D Balaban1,[†], Rolf G Jacob1, and Joseph M Furman. *Neurologic bases for comorbidity of balance disorders, anxiety disorders and migraine...Expert Rev Neurother*. 2011;11 379–394. doi:10.1586/ern.11.19.
- HungC-I,LiuC-Y,YangC-H,WangS. (2015) The Impacts of Migraine among Outpatients with Major Depressive D/O; .PLoSONE10(5):e0128087.doi:10.1371/ journal.pone.0128087
- Levin JM et al, Impact of preoperative depression on Hospital Consumer Assessment of Healthcare Providers and Systems Survey Results in a lumbar fusion population. SPINE 2017:42, 675–681
- Päivi K, et al. Evaluation of the Effects of Physical Activity, Cardiorespiratory Condition, and Neuromuscular Fitness on Direct Healthcare Costs and Sickness-Related Absence Among Nurses l With Recurrent Nonspecific Low Back Pain. SPINE 2017:42, 854–862